Study on connectivity of buried pipeline network considering nodes reliability under seismic action

Author:

Huang DelongORCID,Zong Zhongling,Tang Aiping

Abstract

Currently, the connectivity calculation of complex pipeline networks is mostly simplified or ignores the influence of nodes such as elbows and tees on the connectivity reliability of the entire network. Historical earthquake damage shows that the seismic performance of municipal buried pipelines depends on the ability of nodes and interfaces to resist deformation. The influence of node reliability on network connectivity under reciprocal loading is a key issue to be addressed. Therefore, based on the general connectivity probabilistic analysis algorithm, this paper embeds the reliability of nodes into the reliability of edges, and derives a more detailed and comprehensive on-intersecting minimum path recursive decomposition algorithm considering elbows, tees, and other nodes; then, based on the reliability calculation theory of various pipeline components, the reliability of various nodes in different soil is calculated using finite element numerical simulation; finally, the reliability of a small simple pipeline network and a large complex pipeline network are used as examples to reveal the importance of considering nodes in the connectivity calculation of pipeline network. The reliability of the network system decreases significantly after considering the nodes such as elbows and tees. The damage of one node usually causes the failure of the whole pipes of the path. The damage probability is greater in the area with dense elbow and tee nodes. In this study, all types of nodes that are more prone to damage are considered in detail in the calculation. As a result, the proposed algorithm has been improved in computational accuracy, which lays the foundation for further accurate calculation of pipeline network connectivity.

Funder

Hainan Province Key R&D Program (Social Development) Project of China

Jiangsu Province Key R&D Program (Social Development) Project of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. Application of 3D ground penetrating radar to leakage detection of urban underground pipes;QF Hu;Journal of Tongji University (Natural Science),2020

2. Geotechnics of pipeline system response to earthquakes.;TD O’Rourke;Geotechnical Earthquake Engineering and Soil Dynamics IV,2008

3. Large-scale urban network seismic reliability analysis and optimization.;J Li;Earthquake Engineering and Engineering Vibration,2006

4. Comprehensive seismic capacity assessment method of regional water supply network.;TY Yu;Earthquake Engineering and Engineering Dynamics,2021

5. Recovery-based seismic resilience enhancement strategies of water distribution networks;W Liu;Reliability Engineering and System Safety,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3