Associations between air pollutants and blood pressure in an ethnically diverse cohort of adolescents in London, England

Author:

Karamanos A.ORCID,Lu Y.,Mudway I. S.,Ayis S.,Kelly F. J.,Beevers S. D.,Dajnak D.,Fecht D.,Elia C.,Tandon S.ORCID,Webb A. J.ORCID,Grande A. J.ORCID,Molaodi O. R.,Maynard M. J.,Cruickshank J. K.,Harding S.

Abstract

Longitudinal evidence on the association between air pollution and blood pressure (BP) in adolescence is scarce. We explored this association in an ethnically diverse cohort of schoolchildren. Sex-stratified, linear random-effects modelling was used to examine how modelled residential exposure to annual average nitrogen dioxide (NO2), particulate matter (PM2.5, PM10) and ozone (O3), measures in μg/m3, associated with blood pressure. Estimates were based on 3,284 adolescents; 80% from ethnic minority groups, recruited from 51 schools, and followed up from 11–13 to 14–16 years old. Ethnic minorities were exposed to higher modelled annual average concentrations of pollution at residential postcode level than their White UK peers. A two-pollutant model (NO2 & PM2.5), adjusted for ethnicity, age, anthropometry, and pubertal status, highlighted associations with systolic, but not diastolic BP. A μg/m3 increase in NO2 was associated with a 0.30 mmHg (95% CI 0.18 to 0.40) decrease in systolic BP for girls and 0.19 mmHg (95% CI 0.07 to 0.31) decrease in systolic BP for boys. In contrast, a 1 μg/m3 increase in PM2.5 was associated with 1.34 mmHg (95% CI 0.85 to 1.82) increase in systolic BP for girls and 0.57 mmHg (95% CI 0.04 to 1.03) increase in systolic BP for boys. Associations did not vary by ethnicity, body size or socio-economic advantage. Associations were robust to adjustments for noise levels and lung function at 11–13 years. In summary, higher ambient levels of NO2 were associated with lower and PM2.5 with higher systolic BP across adolescence, with stronger associations for girls.

Funder

Medical Research Foundation

Medical Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3