A novel combination of corneal confocal microscopy, clinical features and artificial intelligence for evaluation of ocular surface pain

Author:

Kundu GairikORCID,Shetty Rohit,D’Souza Sharon,Khamar Pooja,Nuijts Rudy M. M. A.,Sethu Swaminathan,Roy Abhijit Sinha

Abstract

Objectives To analyse various corneal nerve parameters using confocal microscopy along with systemic and orthoptic parameters in patients presenting with ocular surface pain using a random forest artificial intelligence (AI) model. Design Observational, cross-sectional. Methods Two hundred forty eyes of 120 patients with primary symptom of ocular surface pain or discomfort and control group of 60 eyes of 31 patients with no symptoms of ocular pain were analysed. A detailed ocular examination included visual acuity, refraction, slit-lamp and fundus. All eyes underwent laser scanning confocal microscopy (Heidelberg Engineering, Germany) and their nerve parameters were evaluated. The presence or absence of orthoptic issues and connective tissue disorders were included in the AI. The eyes were grouped as those (Group 1) with symptom grade higher than signs, (Group 2) with similar grades of symptoms and signs, (Group3) without symptoms but with signs, (Group 4) without symptoms and signs. The area under curve (AUC), accuracy, recall, precision and F1-score were evaluated. Results Over all, the AI achieved an AUC of 0.736, accuracy of 86%, F1-score of 85.9%, precision of 85.6% and recall of 86.3%. The accuracy was the highest for Group 2 and least for Group 3 eyes. The top 6 parameters used for classification by the AI were microneuromas, immature and mature dendritic cells, presence of orthoptic issues and nerve fractal dimension parameter. Conclusions This study demonstrated that various corneal nerve parameters, presence or absence of systemic and orthoptic issues coupled with AI can be a useful technique to understand and correlate the various clinical and imaging parameters of ocular surface pain.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. Ocular Surface Pain: A Narrative Review.;D Mehra;Ophthalmol Ther,2020

2. What Causes Eye Pain?;C Belmonte;Curr Ophthalmol Rep.,2015

3. Impact of the COVID-19 lockdown on digital device-related ocular health.;FA Bahkir;Indian J Ophthalmol.,2020

4. TFOS DEWS II Definition and Classification Report.;JP Craig;Ocul Surf.,2017

5. Dry eye in vitamin D deficiency: more than an incidental association.;P Yildirim;Int J Rheum Dis.,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3