Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose

Author:

Tsuchiya Wataru,Fujimoto ZuiORCID,Inagaki Noritoshi,Nakagawa Hiroyuki,Tanaka Miwa,Kimoto-Nira Hiromi,Yamazaki Toshimasa,Suzuki ChiseORCID

Abstract

Lactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics. Western blotting of cell-wall proteins using antibodies generated against whole G50 cells detected a 120-kDa protein. MALDI-TOF MS analysis identified it as YwfG, a Leu-Pro-any-Thr-Gly cell-wall-anchor-domain–containing protein. Based on a predicted domain structure, a recombinant YwfG variant covering the N-terminal half (aa 28–511) of YwfG (YwfG28−511) was crystallized and the crystal structure was determined. The structure consisted of an L-type lectin domain, a mucin-binding protein domain, and a mucus-binding protein repeat. Recombinant YwfG variants containing combinations of these domains (YwfG28–270, YwfG28–336, YwfG28−511, MubR4) were prepared and their interactions with monosaccharides were examined by isothermal titration calorimetry; the only interaction observed was between YwfG28–270, which contained the L-type lectin domain, and d-mannose. Among four mannobioses, α-1,2-mannobiose had the highest affinity for YwfG28–270 (dissociation constant = 34 μM). YwfG28–270 also interacted with yeast mannoproteins and yeast mannan. Soaking of the crystals of YwfG28–511 with mannose or α-1,2-mannobiose revealed that both sugars bound to the L-type lectin domain in a similar manner, although the presence of the mucin-binding protein domain and the mucus-binding protein repeat within the recombinant protein inhibited the interaction between the L-type lectin domain and mannose residues. Three of the YwfG variants (except MubR4) induced aggregation of yeast cells. Strain G50 also induced aggregation of yeast cells, which was abolished by deletion of ywfG from G50, suggesting that surface YwfG contributes to the interaction with yeast cells. These findings provide new structural and functional insights into the interaction between L. lactis and its ecological niche via binding of the cell-surface protein YwfG with mannose.

Funder

JSPS KAKENHI

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3