Three novel bird strike likelihood modelling techniques: The case of Brisbane Airport, Australia

Author:

Andrews RobertORCID,Bevrani Bayan,Colin Brigitte,Wynn Moe T.,ter Hofstede Arthur H. M.,Ring Jackson

Abstract

The risk posed by wildlife to air transportation is of great concern worldwide. In Australia alone, 17,336 bird-strike incidents and 401 animal-strike incidents were reported to the Air Transport Safety Board (ATSB) in the period 2010-2019. Moreover, when collisions do occur, the impact can be catastrophic (loss of life, loss of aircraft) and involve significant cost to the affected airline and airport operator (estimated at globally US$1.2 billion per year). On the other side of the coin, civil aviation, and airport operations have significantly affected bird populations. There has been an increasing number of bird strikes, generally fatal to individual birds involved, reported worldwide (annual average of 12,219 reported strikes between 2008-2015 being nearly double the annual average of 6,702 strikes reported 2001-2007) (ICAO, 2018). Airport operations including construction of airport infrastructure, frequent take-offs and landings, airport noise and lights, and wildlife hazard management practices aimed at reducing risk of birdstrike, e.g., spraying to remove weeds and invertebrates, drainage, and even direct killing of individual hazard species, may result in habitat fragmentation, population decline, and rare bird extinction adjacent to airports (Kelly T, 2006; Zhao B, 2019; Steele WK, 2021). Nevertheless, there remains an imperative to continually improve wildlife hazard management methods and strategies so as to reduce the risk to aircraft and to bird populations. Current approved wildlife risk assessment techniques in Australia are limited to ranking of identified hazard species, i.e., are ‘static’ and, as such, do not provide a day-to-day risk/collision likelihood. The purpose of this study is to move towards a dynamic, evidence-based risk assessment model of wildlife hazards at airports. Ideally, such a model should be sufficiently sensitive and responsive to changing environmental conditions to be able to inform both short and longer term risk mitigation decisions. Challenges include the identification and quantification of contributory risk factors, and the selection and configuration of modelling technique(s) that meet the aforementioned requirements. In this article we focus on likelihood of bird strike and introduce three distinct, but complementary, assessment techniques, i.e., Algebraic, Bayesian, and Clustering (ABC) for measuring the likelihood of bird strike in the face of constantly changing environmental conditions. The ABC techniques are evaluated using environment and wildlife observations routinely collected by the Brisbane Airport Corporation (BAC) wildlife hazard management team. Results indicate that each of the techniques meet the requirements of providing dynamic, realistic collision risks in the face of changing environmental conditions.

Funder

Brisbane Airport Corporation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. A predictive model for risk assessment on imminent bird strikes on airport areas;M Lopez-Lago;Aerospace Science and Technology,2017

2. Wildlife management practices at western Canadian airports;G Hesse;Journal of Air Transport Management,2010

3. Australian Transport Security Bureau (ATSB). Aviation Occurrence Statistics: 2010–2019. Australian Transport Safety Bureau; 2020. Available from: https://www.atsb.gov.au/media/5778822/ar-2020-047_final.pdf [last accessed 2021-07-12].

4. Federal Aviation Authority. FAA Wildlife Strike Database; [last accessed: 2021-08-02]. https://wildlife.faa.gov/search.

5. Dolbeer R, Begier M, Miller P, Weller J, AL A. Wildlife strikes to civil aircraft in the United States 1990–2021, Federal Aviation Administration. National Wildlife Strike Database. 2022;.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3