Untargeted saliva metabolomics by liquid chromatography—Mass spectrometry reveals markers of COVID-19 severity

Author:

Frampas Cecile F.,Longman Katie,Spick MattORCID,Lewis Holly-May,Costa Catia D. S.,Stewart Alex,Dunn-Walters Deborah,Greener Danni,Evetts George,Skene Debra J.ORCID,Trivedi Drupad,Pitt Andy,Hollywood Katherine,Barran Perdita,Bailey Melanie J.

Abstract

Background The COVID-19 pandemic is likely to represent an ongoing global health issue given the potential for new variants, vaccine escape and the low likelihood of eliminating all reservoirs of the disease. Whilst diagnostic testing has progressed at a fast pace, the metabolic drivers of outcomes–and whether markers can be found in different biofluids–are not well understood. Recent research has shown that serum metabolomics has potential for prognosis of disease progression. In a hospital setting, collection of saliva samples is more convenient for both staff and patients, and therefore offers an alternative sampling matrix to serum. Methods Saliva samples were collected from hospitalised patients with clinical suspicion of COVID-19, alongside clinical metadata. COVID-19 diagnosis was confirmed using RT-PCR testing, and COVID-19 severity was classified using clinical descriptors (respiratory rate, peripheral oxygen saturation score and C-reactive protein levels). Metabolites were extracted and analysed using high resolution liquid chromatography-mass spectrometry, and the resulting peak area matrix was analysed using multivariate techniques. Results Positive percent agreement of 1.00 between a partial least squares–discriminant analysis metabolomics model employing a panel of 6 features (5 of which were amino acids, one that could be identified by formula only) and the clinical diagnosis of COVID-19 severity was achieved. The negative percent agreement with the clinical severity diagnosis was also 1.00, leading to an area under receiver operating characteristics curve of 1.00 for the panel of features identified. Conclusions In this exploratory work, we found that saliva metabolomics and in particular amino acids can be capable of separating high severity COVID-19 patients from low severity COVID-19 patients. This expands the atlas of COVID-19 metabolic dysregulation and could in future offer the basis of a quick and non-invasive means of sampling patients, intended to supplement existing clinical tests, with the goal of offering timely treatment to patients with potentially poor outcomes.

Funder

Engineering and Physical Sciences Research Council

Biotechnology and Biological Sciences Research Council

University of Surrey

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Oxford–AstraZeneca COVID-19 vaccine efficacy;MD Knoll;The Lancet,2021

2. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report;The RECOVERY Collaborative Group;N Engl J Med,2020

3. Second wave COVID ‑ 19 pandemics in Europe;: a temporal playbook;G. Cacciapaglia;Sci Rep,2020

4. Superposition of COVID-19 waves, anticipating a sustained wave, and lessons for the future;JW Lai,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3