Comparison of genetic variation between rare and common congeners of Dipodomys with estimates of contemporary and historical effective population size

Author:

Halsey Michaela K.,Stuhler John D.,Bayona-Vásquez Natalia J.ORCID,Platt Roy N.,Goetze Jim R.,Martin Robert E.,Matocha Kenneth G.,Bradley Robert D.,Stevens Richard D.,Ray David A.ORCID

Abstract

Species with low effective population sizes are at greater risk of extinction because of reduced genetic diversity. Such species are more vulnerable to chance events that decrease population sizes (e.g. demographic stochasticity). Dipodomys elator, (Texas kangaroo rat) is a kangaroo rat that is classified as threatened in Texas and field surveys from the past 50 years indicate that the distribution of this species has decreased. This suggests geographic range reductions that could have caused population fluctuations, potentially impacting effective population size. Conversely, the more common and widespread D. ordii (Ord’s kangaroo rat) is thought to exhibit relative geographic and demographic stability. We assessed the genetic variation of D. elator and D. ordii samples using 3RAD, a modified restriction site associated sequencing approach. We hypothesized that D. elator would show lower levels of nucleotide diversity, observed heterozygosity, and effective population size when compared to D. ordii. We were also interested in identifying population structure within contemporary samples of D. elator and detecting genetic variation between temporal samples to understand demographic dynamics. We analyzed up to 61,000 single nucleotide polymorphisms. We found that genetic variability and effective population size in contemporary D. elator populations is lower than that of D. ordii. There is slight, if any, population structure within contemporary D. elator samples, and we found low genetic differentiation between spatial or temporal historical samples. This indicates little change in nuclear genetic diversity over 30 years. Results suggest that genetic diversity of D. elator has remained stable despite reduced population size and/or abundance, which may indicate a metapopulation-like system, whose fluctuations might counteract species extinction.

Funder

Texas State Comptroller

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3