Abstract
The use of an external dome aerosol containment device (Prime Protector) is proposed to reduce the spread of particles within the dental office. Hence, the aim of our study was to compare the spread of bioaerosols generated by a High-speed Handpiece (HH) and an Ultrasonic Prophylaxis Device (UPD), with and without the Prime Protector dome (PP) by counting Colony Forming Units (CFU) of Lactobacillus casei Shirota, at different distances on the x and y axis. The PP was located considering the parallelism between the base of the dome and the frontal plane of the simulator, aligning the center of the mouth with the center of the dome. The PP dome measurements are 560.0mm x 255.0mm x 5mm. Petri dishes were placed at 0.5 m, 1 m and 1.5 m respectively. Aerosol generation in the laboratory environment was done three times with the following experimental groups 1) HH, 2) HH-PP, 3) UPD, 4) UPD-PP. Each dental device activation (HH and UPD) had a time frame of 2 minutes on the upper anterior teeth of the dental phantom with a liquid suspension containing Lactobacillus casei Shirota (YAKULT 0836A 0123; 1027F 0407). Air pressure and ventilation were parameterized. No separate high-volume evacuation used, nor was there any air removal attached to the dome. Results showed no significant difference between distance and axis in the CFU count. When means for devices and distances were compared between each of them all showed significant differences except for UPD and UPD-PP (p <0,004). In conclusion, external devices like Prime Protector could help decrease aerosol diffusion during high-speed handpiece activation. However, this dome does not replace the use of PPE inside dental clinics.
Publisher
Public Library of Science (PLoS)