Characterizing the neighborhood risk environment in multisite clinic-based cohort studies: A practical geocoding and data linkages protocol for protected health information

Author:

Nassel Ariann,Wilson-Barthes Marta G.ORCID,Howe Chanelle J.,Napravnik Sonia,Mugavero Michael J.,Agil Deana,Dulin Akilah J.

Abstract

Background Maintaining patient privacy when geocoding and linking residential address information with neighborhood-level data can create challenges during research. Challenges may arise when study staff have limited training in geocoding and linking data, or when non-study staff with appropriate expertise have limited availability, are unfamiliar with a study’s population or objectives, or are not affordable for the study team. Opportunities for data breaches may also arise when working with non-study staff who are not on-site. We detail a free, user-friendly protocol for constructing indices of the neighborhood risk environment during multisite, clinic-based cohort studies that rely on participants’ protected health information. This protocol can be implemented by study staff who do not have prior training in Geographic Information Systems (GIS) and can help minimize the operational costs of integrating geographic data into public health projects. Methods This protocol demonstrates how to: (1) securely geocode patients’ residential addresses in a clinic setting and match geocoded addresses to census tracts using Geographic Information System software (Esri, Redlands, CA); (2) ascertain contextual variables of the risk environment from the American Community Survey and ArcGIS Business Analyst (Esri, Redlands, CA); (3) use geoidentifiers to link neighborhood risk data to census tracts containing geocoded addresses; and (4) assign randomly generated identifiers to census tracts and strip census tracts of their geoidentifiers to maintain patient confidentiality. Results Completion of this protocol generates three neighborhood risk indices (i.e., Neighborhood Disadvantage Index, Murder Rate Index, and Assault Rate Index) for patients’ coded census tract locations. Conclusions This protocol can be used by research personnel without prior GIS experience to easily create objective indices of the neighborhood risk environment while upholding patient confidentiality. Future studies can adapt this protocol to fit their specific patient populations and analytic objectives.

Funder

National Institutes of Health/National Institute of Mental Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference65 articles.

1. The influence of HOPE VI neighborhood revitalization on neighborhood-based physical activity: A mixed-methods approach;A Dulin-Keita;Soc Sci Med,2015

2. Racial residential segregation: A fundamental cause of racial disparities in health;DR Williams;Public Health Rep,2001

3. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review;KE Pickett;J Epidemiol Community Heal,2001

4. Do neighbourhoods matter? Neighbourhood disorder and long-term trends in serum cortisol levels.;A Dulin-Keita;J Epidemiol Community Health,2012

5. Neighborhood Disadvantage and Cumulative Biological Risk Among a Socioeconomically Diverse Sample of African American Adults: An Examination in the Jackson Heart Study;S Barber;J Racial Ethn Heal Disparities,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3