Predicting Plasmodium falciparum infection status in blood using a multiplexed bead-based antigen detection assay and machine learning approaches

Author:

Schmedes Sarah E.,Dimbu Rafael P.,Steinhardt Laura,Lemoine Jean F.,Chang Michelle A.,Plucinski MateuszORCID,Rogier EricORCID

Abstract

Background Plasmodium blood-stage infections can be identified by assaying for protein products expressed by the parasites. While the binary result of an antigen test is sufficient for a clinical result, greater nuance can be gathered for malaria infection status based on quantitative and sensitive detection of Plasmodium antigens and machine learning analytical approaches. Methods Three independent malaria studies performed in Angola and Haiti enrolled persons at health facilities and collected a blood sample. Presence and parasite density of P. falciparum infection was determined by microscopy for a study in Angola in 2015 (n = 193), by qRT-PCR for a 2016 study in Angola (n = 208), and by qPCR for a 2012–2013 Haiti study (n = 425). All samples also had bead-based detection and quantification of three Plasmodium antigens: pAldolase, pLDH, and HRP2. Decision trees and principal component analysis (PCA) were conducted in attempt to categorize P. falciparum parasitemia density status based on continuous antigen concentrations. Results Conditional inference trees were trained using the known P. falciparum infection status and corresponding antigen concentrations, and PCR infection status was predicted with accuracies ranging from 73–96%, while level of parasite density was predicted with accuracies ranging from 59–72%. Multiple decision nodes were created for both pAldolase and HRP2 antigens. For all datasets, dichotomous infectious status was more accurately predicted when compared to categorization of different levels of parasite densities. PCA was able to account for a high level of variance (>80%), and distinct clustering was found in both dichotomous and categorical infection status. Conclusions This pilot study offers a proof-of-principle of the utility of machine learning approaches to assess P. falciparum infection status based on continuous concentrations of multiple Plasmodium antigens.

Funder

US Presidents Malaria Initiative

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3