A deep semantic vegetation health monitoring platform for citizen science imaging data

Author:

Khan AsimORCID,Asim Warda,Ulhaq Anwaar,Robinson Randall W.

Abstract

Automated monitoring of vegetation health in a landscape is often attributed to calculating values of various vegetation indexes over a period of time. However, such approaches suffer from an inaccurate estimation of vegetational change due to the over-reliance of index values on vegetation’s colour attributes and the availability of multi-spectral bands. One common observation is the sensitivity of colour attributes to seasonal variations and imaging devices, thus leading to false and inaccurate change detection and monitoring. In addition, these are very strong assumptions in a citizen science project. In this article, we build upon our previous work on developing a Semantic Vegetation Index (SVI) and expand it to introduce a semantic vegetation health monitoring platform to monitor vegetation health in a large landscape. However, unlike our previous work, we use RGB images of the Australian landscape for a quarterly series of images over six years (2015–2020). This Semantic Vegetation Index (SVI) is based on deep semantic segmentation to integrate it with a citizen science project (Fluker Post) for automated environmental monitoring. It has collected thousands of vegetation images shared by various visitors from around 168 different points located in Australian regions over six years. This paper first uses a deep learning-based semantic segmentation model to classify vegetation in repeated photographs. A semantic vegetation index is then calculated and plotted in a time series to reflect seasonal variations and environmental impacts. The results show variational trends of vegetation cover for each year, and the semantic segmentation model performed well in calculating vegetation cover based on semantic pixels (overall accuracy = 97.7%). This work has solved a number of problems related to changes in viewpoint, scale, zoom, and seasonal changes in order to normalise RGB image data collected from different image devices.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. The chronostratigraphic method is unsuitable for determining the start of the Anthropocene;M Edgeworth;Progress in Physical Geography: Earth and Environment,2019

2. Extensive twenty-first century woody encroachment in South America’s Savanna;TM Rosan;Geophysical Research Letters,2019

3. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review;L Gao;ISPRS Journal of Photogrammetry and Remote Sensing,2020

4. Long-term patterns of change in a vanishing cultural landscape: A GIS-based assessment;V Amici;Ecological Informatics,2017

5. Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe;T Lasanta;Environmental Science & Policy,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3