Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation

Author:

Wu Jin,Liu YongORCID,Zhu Yuanpei,Li Zun

Abstract

Extracting features of retinal vessels from fundus images plays an essential role in computer-aided diagnosis of diseases, such as diabetes, hypertension, and cerebrovascular diseases. Although a number of deep learning-based methods have been used in this field, the accuracy of retinal vessel segmentation remains challenging due to limited densely annotated data, inter-vessel differences, and structured prediction problems, especially in areas of small blood vessels and the optic disk. In this paper, we propose an ARN model with a atrous block to address these issues, which can avoid the loss of data structure, and enlarge the receptive field, so that each convolution output contains a larger range of information. In addition, we also introduce residual convolution network to increase the network depth and improve the network performance.Some key parameters are used to measure the feasibility of the model, such as sensitivity (Se), specificity (Sp), F1-score (F1), accuracy (Acc), and area under each curve (AUC). Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed methods, which accuracy are 0.9686 on the DRIVE and 0.9746 on the CHASE DB1. The segmentation structure can assist the doctor in diagnosis more effectively.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

1. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Sub-Image Classification. IEEE J;R. Sohini;Biomed. Health Inform,2015

2. Blood vessel segmentation methodologies in retinal images-asurvey;Muhammad Moazam Fraz;Computer methods and programs in biomedicine

3. Fuzzy based image edge detection algorithm for blood vessel detection in retinal images;F. Orujov;Applied Soft Computing,2020

4. An automated early diabetic retinopathy detection through improved blood vessel and optic disc segmentation. Optics &;A S Kumar;Laser Technology

5. Blood vessel detection from Retinal fundas images using GIFKCN classifier;SS Mondal;Procedia Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3