MiR-31 improves spinal cord injury in mice by promoting the migration of bone marrow mesenchymal stem cells

Author:

Zhang Yujuan,Cao Lili,Du Ruochen,Tian Feng,Li Xiao,Yuan Yitong,Wang ChunfangORCID

Abstract

Background Stem cell transplantation therapy is a potential approach for the repair of spinal cord injuries and other neurodegenerative diseases, but its effectiveness is hampered by the low rate of targeted migration of cells to the area of injury. The aim of this study was to investigate the effects of miR-31 on the migration of bone marrow mesenchymal stem cells (BMSCs) and the regulation of MMP-2 and CXCR4 expression in vitro and in vivo. Methods eGFP-expressing BMSCs were isolated and cultured for subsequent experiments. The experiments were divided into three groups: control group, miR-31agomir group, and miR-31antagomir group. Proliferation was analyzed using CCK-8 and flow cytometry; cell migration in vitro was analyzed using wound-healing and transwell assays. The mouse SCI model was prepared by the impact method, and cells were transplanted (3 groups, 12 per group). Relevant inflammatory factors were detected by ELISA. The BMS score was used to evaluate the functional recovery of the mouse spinal cord and the frozen section was used to analyze the cell migration ability in vivo. The in vitro and in vivo expression levels of MMP-2 and CXCR4 were evaluated by Western blot and immunohistochemical staining. Results In vitro experiments showed that cells in the miR-31agomir group exhibited enhanced cell proliferation (P<0.05, P<0.001) and migration (P<0.001) and upregulated protein expression levels of CXCR4 (P<0.01) and MMP-2 (P<0.001) compared with cells in the control group. The results of in vivo experiments showed that the expression of pro-inflammatory factors was reduced after cell transplantation treatment. Cells in the miR-31agomir group showed enhanced cell-targeted migration ability (P<0.001), improved the function of damaged tissues (P<0.001), and upregulated CXCR4 and MMP-2 expression compared to the control group (P<0.001). Conclusion Our experiment demonstrated that miR-31 could promote the migration of BMSCs and miR-31 could repair and improve the function of damaged tissues in SCI.

Funder

National Natural Science Foundation of China

Applied Basic Research Project of Shanxi Province

Key Laboratory Opening Project of Shanxi Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3