Abstract
The goal of the study was to investigate how variations in ripple width influence the ripple density resolution. The influence of the ripple width was investigated with two experimental paradigms: (i) discrimination between a rippled test signal and a rippled reference signal with opposite ripple phases and (ii) discrimination between a rippled test signal and a flat reference signal. The ripple density resolution depended on the ripple width: the narrower the width, the higher the resolution. For distinguishing between two rippled signals, the resolution varied from 15.1 ripples/oct at a ripple width of 9% of the ripple frequency spacing to 8.1 ripples/oct at 64%. For distinguishing between a rippled test signal and a non-rippled reference signal, the resolution varied from 85 ripples/oct at a ripple width of 9% to 9.3 ripples/oct at a ripple width of 64%. For distinguishing between two rippled signals, the result can be explained by the increased ripple depth in the excitation pattern due to the widening of the inter-ripple gaps. For distinguishing between a rippled test signal and a non-rippled reference signal, the result can be explained by the increased ratio between the autocorrelated and uncorrelated components of the input signal.
Funder
The Russian Foundation for Basic Research
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献