Dynamic response of pre-disintegrated carbonaceous mudstone embankment under multi-lane vehicle load

Author:

He Zhongming,Wang PanpanORCID,Gong Weidi

Abstract

The purpose of this study is to reveal the response of multi Lane pre disintegrated carbonaceous mudstone embankment under vehicle dynamic load. In this paper, the pre-disintegrated carbonaceous mudstone samples whose fractal dimension meets the requirements are obtained through the indoor disintegration test of carbonaceous mudstone. Geotechnical basic tests such as particle analysis experiments, compaction tests, and direct shear tests were carried out on the pre-disintegrated carbonaceous mudstone samples, and the physical and mechanical parameters of the pre-disintegrated carbonaceous mudstone were obtained. On this basis, a two-way 4-lane pre-disintegration carbonaceous mudstone embankment model of the expressway was established by ABAQUS numerical software. Three different working conditions are set up to study the dynamic response of multi-lane pre-disintegrated carbonaceous mudstone embankment under vehicle load. The results show that the stress change trend on the surface of the pre-disintegrated carbonaceous mudstone embankment without vehicles is the same as that on the side with vehicles. Under this condition, the vertical displacement of the pre-disintegrated carbonaceous mudstone embankment surface can be as high as 4.33mm, and the vertical displacement change of the embankment in the 0–0.6s phase is basically the same as the stress amplitude distribution. When a traffic jam occurs on one side, the maximum increase in vertical stress on the surface of the embankment on the normal driving side is about 170 kPa compared to condition one, and the vertical displacement at each depth of the embankment has been significantly increased. When a traffic jam occurs on one side, it can significantly increase the vertical stress on the surface of the pre-disintegrated carbonaceous mudstone embankment in this lane. The middle part of the stress time curve of monitoring points 3 and 4 in working condition three is more stable and significant than in working condition one, and the maximum vertical displacement is increased by about 1.70mm. The research results can reference the stability analysis of carbonaceous mudstone embankments and engineering practice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Effect of Nanotalc on the Shear Strength of Disintegrated Carbonaceous Mudstone;H. Fu;J. Nanosci. Nanotechnol,2020

2. Study of the Strength of Disintegrated Carbonaceous Mudstone Modified with Nano-Al2O3 and Cement;H. Fu;J. Nanosci. Nanotechnol,2020

3. Research on the Disintegration Characteristics of Carbonaceous Mudstone and Properties of Modified Materials;X. Liu;Advances in Civil Engineering,2019

4. Road performance of pre disintegrated carbonaceous mudstone and its mechanical properties based on triaxial CT test;Z. Ling;Journal of Central South University (NATURAL SCIENCE EDITION),2016

5. Experimental study on deformation and strength of pre disintegrated carbonaceous mudstone considering loading and immersion conditions;F. Hongyuan;Rock and Soil Mechanics,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3