Hybrid asset localization using light fidelity and Bluetooth Low Energy

Author:

Albraheem LamyaORCID,Alshathri Haifa,Alsheddi Raghad,Alotaibi Ruba,Alkharashi Ghaida

Abstract

Recently, there has been increasing interest in the field of indoor localization. This field of research can facilitate building and asset management. Although there are different technologies that can be used for localization, there are many limitations that need to be improved, and therefore there is a need to explore new technologies and alternatives that can improve indoor localization. It has been proven that visible light can be used to transfer data. A German physicist, Harald Haas, introduced the term “Li-Fi”, which stands for “light fidelity”, as a new technology that uses light as a medium to deliver data. Accordingly, in this study, we have proposed a hybrid asset localization system using Li-Fi and Bluetooth Low Energy (BLE). This system utilizes light-emitting diodes (LEDs) and BLE tags to detect the locations of assets in a smart building with the support of crowdsourcing technology. The system can make the management, maintenance, and localization process of equipment inside the buildings more easier. To achieve the required, the paper provides a comparison between different applications that have been developed for indoor localization using Li-Fi technology in order to highlight the limitations that need more improvement. The proposed system consists of a web-based administrator panel that allows the administrator to manage maps, assets, tags, LED lamps, and maintenance requests, as well as a mobile application that enables the user to locate, search and view asset information. In addition, the mobile application performs the process of crowdsourcing to update the assets’ locations. We experimentally explore the system’s functionalities and the results show that the system can accurately localize assets, and can detect Li-Fi signals from 55 lx and above within a range of 1.5 m. In addition, the BLE stickers can be detected up to 7 meters away, however, the crowdsourcing process to update the asset location is performed if the distance between the mobile application and the asset is less than or equal 1 m which gives accurate results.

Funder

This research project was supported by a grant from the “Research Center of the Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. A Survey of Indoor Localization Systems and Technologies;F. Zafari;IEEE Communications Surveys & Tutorials,2019

2. Y. Wang, ‘Indoor Localization Based on Visible Light Communication’, M.S. thesis, Electrical Engineering, Lehigh University, Bethlehem, Pennsylvania, 2017.

3. A Review Paper on Li-Fi Technology;E. Julka;International Journal of Scientific & Engineering Research,2015

4. Lifi (Light Fidelity) Technology for Future Wireless;M. Madhok;International Journal of Advanced Computational Engineering and Networking,2016

5. Performance evaluation of Bluetooth low energy in indoor positioning systems;D. Contreras;Transactions on Emerging Telecommunications Technologies,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3