Prenatal stress assessment using heart rate variability and salivary cortisol: A machine learning-based approach

Author:

Cao RuiORCID,Rahmani Amir M.,Lindsay Karen L.ORCID

Abstract

Objective To develop a machine learning algorithm utilizing heart rate variability (HRV) and salivary cortisol to detect the presence of acute stress among pregnant women that may be applied to future clinical research. Methods ECG signals and salivary cortisol were analyzed from 29 pregnant women as part of a crossover study involving a standardized acute psychological stress exposure and a control non-stress condition. A filter-based features selection method was used to identify the importance of different features [heart rate (HR), time- and frequency-domain HRV parameters and salivary cortisol] for stress assessment and reduce the computational complexity. Five machine learning algorithms were implemented to assess the presence of stress with and without salivary cortisol values. Results On graphical visualization, an obvious difference in heart rate (HR), HRV parameters and cortisol were evident among 17 participants between the two visits, which helped the stress assessment model to distinguish between stress and non-stress exposures with greater accuracy. Eight participants did not display a clear difference in HR and HRV parameters but displayed a large increase in cortisol following stress compared to the non-stress conditions. The remaining four participants did not demonstrate an obvious difference in any feature. Six out of nine features emerged from the feature selection method: cortisol, three time-domain HRV parameters, and two frequency-domain parameters. Cortisol was the strongest contributing feature, increasing the assessment accuracy by 10.3% on average across all five classifiers. The highest assessment accuracy achieved was 92.3%, and the highest average assessment accuracy was 76.5%. Conclusion Salivary cortisol contributed a significant increase in accuracy of the assessment model compared to using a range of HRV parameters alone. Our machine learning model demonstrates acceptable accuracy in detection of acute stress among pregnant women when combining salivary cortisol with HR and HRV parameters.

Funder

National Institute of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3