Predicting past and future SARS-CoV-2-related sick leave using discrete time Markov modelling

Author:

Lei JiayaoORCID,Clements MarkORCID,Elfström Miriam,Lundgren Kalle Conneryd,Dillner JoakimORCID

Abstract

Background Prediction of SARS-CoV-2-induced sick leave among healthcare workers (HCWs) is essential for being able to plan the healthcare response to the epidemic. Methods During first wave of the SARS-Cov-2 epidemic (April 23rd to June 24th, 2020), the HCWs in the greater Stockholm region in Sweden were invited to a study of past or present SARS-CoV-2 infection. We develop a discrete time Markov model using a cohort of 9449 healthcare workers (HCWs) who had complete data on SARS-CoV-2 RNA and antibodies as well as sick leave data for the calendar year 2020. The one-week and standardized longer term transition probabilities of sick leave and the ratios of the standardized probabilities for the baseline covariate distribution were compared with the referent period (an independent period when there were no SARS-CoV-2 infections) in relation to PCR results, serology results and gender. Results The one-week probabilities of transitioning from healthy to partial sick leave or full sick leave during the outbreak as compared to after the outbreak were highest for healthy HCWs testing positive for large amounts of virus (ratio: 3.69, (95% confidence interval, CI: 2.44–5.59) and 6.67 (95% CI: 1.58–28.13), respectively). The proportion of all sick leaves attributed to COVID-19 during outbreak was at most 55% (95% CI: 50%-59%). Conclusions A robust Markov model enabled use of simple SARS-CoV-2 testing data for quantifying past and future COVID-related sick leave among HCWs, which can serve as a basis for planning of healthcare during outbreaks.

Funder

County Council of Stockholm

Karolinska University Hospital

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3