Abstract
Internet of things (IoT) applications in smart agricultural systems vary from monitoring climate conditions, automating irrigation systems, greenhouse automation, crop monitoring and management, and crop prediction, up to end-to-end autonomous farm management systems. One of the main challenges to the advancement of IoT systems for the agricultural domain is the lack of training data under operational environmental conditions. Most of the current designs are based on simulations and artificially generated data. Therefore, the essential first step is studying and understanding the finely tuned and highly sensitive mechanism plants have developed to sense, respond, and adapt to changes in their environment, and their behavior under field and controlled systems. Therefore, this study was designed to achieve two specific objectives; to develop low-cost IoT components from basic building blocks, and to study the performance of the developed systems, and generate real-time experimental data, with and without plants. Low-cost IoT devices developed locally were used to convert existing basic polytunnels to semi-controlled and monitoring-only polytunnels. Their performances were analyzed and compared with each other based on several matrices while maintaining the planted tomato variety and agronomic practices similar. The developed system performed as expected suggesting the possibility of commercial applications and research purposes.
Funder
Organization for Women in Science for Developing World
Publisher
Public Library of Science (PLoS)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献