Abstract
Conventional passive tracking methods for underwater acoustic targets in sonar engineering generate time azimuth histogram and use it as a basis for target azimuth and tracking. Passive underwater acoustic targets only have azimuth information on the time azimuth histogram, which is easy to be lost and disturbed by ocean noise. To improve the accuracy of passive tracking, we propose to adopt the processed multi-beam Low Frequency Analysis and Recording (LOFAR) as the dataset for passive tracking. In this paper, an improved LeNet-5 convolutional neural network model (CNN) model is used to identify targets, and a passive tracking method for underwater acoustic targets based on multi-beam LOFAR and deep learning is proposed, combined with Extended Kalman Filter (EKF) to improve the tracking accuracy. The performance of the method under realistic conditions is evaluated through simulation analysis and validation using data obtained from marine experiments.
Publisher
Public Library of Science (PLoS)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献