Design and performance analysis of salinity gradient solar pond under different climatic and soil conditions

Author:

Shahid Muhammad Ihsan,Asim Muhammad,Farhan Muhammad,Sheikh Muhammad FahadORCID,Ashraf Muhammad Usman,Arshad HassanORCID,Alghamdi AhmedORCID,S. Alshahrani Abdullah,Bahaddad Adel A.,Almarhabi Khalid Ali

Abstract

A salinity gradient solar pond (SGSP) is capable of storing a significant quantity of heat for an extended period of time. It is a great option for providing hot water at a reduced energy cost. Additionally, SGSP is used in low-temperature industrial applications such as saltwater desalination, space heating, and power generation. Solar pond thermal performance is dependent on a variety of operational variables, including the soil conditions, the climate of the particular site, the thickness of the solar pond layers, the depth of the water table, and the salt content of the pond. As such, this study examines the thermal performance of a solar pond under a variety of operational conditions. The solar pond model is used to test the thermal performance by simulating two-dimensional heat and mass transport equations. The equations are solved using the finite difference technique utilizing MATLAB® scripts. Salt distributions and temperature profiles are computed for a variety of factors influencing SGSP’s thermal performance. The main distinguishing variables influencing the thermal performance of SGSP are soil conditions, such as soil texture, types, the moisture level in soil, and water table depth. The final findings indicated that the fine sand dry soil performed better than the other soil types owing to its poor heat conductivity. The economic results indicated that the period of return (POR) of the intended system is around 2 years. The solar pond construction costs such as excavation, transportation, salt and lining, were considered based on the local prices. This modeled study extracted the greatest possible energy is 110W/m2, with the fine sand dry at 62.48°C lowest temperature. This study suggested that the climatic conditions of Lahore is better than climatic conditions of Islamabad. Additionally, deeper water tables are suggested for improved thermal performance of the pond.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. Feasibility studies on the enhancement of energy storage in the ground beneath solar ponds;R. Prasad;Sol. energy,1993

2. Solar ponds for space heating;A. Rabl;Sol. Energy,1975

3. Transient modeling of a salt gradient solar pond using a hybrid Finite-Volume and Cascaded Lattice-Boltzmann method: Thermal characteristics and stability analysis;A. El Mansouri;Energy Convers. Manag.,2018

4. A parametric study on solar ponds [Salt gradients, low grade heat source].;Y. F. Wang;Sol. Energy,1983

5. The steady state salt gradient solar pond;C. F. Kooi;Sol. Energy,1979

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3