A new gene tree algorithm employing DNA sequences of bovine genome using discrete Fourier transformation

Author:

Abadeh Roxana,Aminafshar Mehdi,Ghaderi-Zefrehei MostafaORCID,Chamani Mohammad

Abstract

Within the realms of human thoughts on nature, Fourier analysis is considered as one of the greatest ideas currently put forwarded. The Fourier transform shows that any periodic function can be rewritten as the sum of sinusoidal functions. Having a Fourier transform view on real-world problems like the DNA sequence of genes, would make things intuitively simple to understand in comparison with their initial formal domain view. In this study we used discrete Fourier transform (DFT) on DNA sequences of a set of genes in the bovine genome known to govern milk production, in order to develop a new gene clustering algorithm. The implementation of this algorithm is very user-friendly and requires only simple routine mathematical operations. By transforming the configuration of gene sequences into frequency domain, we sought to elucidate important features and reveal hidden gene properties. This is biologically appealing since no information is lost via this transformation and we are therefore not reducing the number of degrees of freedom. The results from different clustering methods were integrated using evidence accumulation algorithms to provide in insilico validation of our results. We propose using candidate gene sequences accompanied by other genes of biologically unknown function. These will then be assigned some degree of relevant annotation by using our proposed algorithm. Current knowledge in biological gene clustering investigation is also lacking, and so DFT-based methods will help shine a light on use of these algorithms for biological insight.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference26 articles.

1. Power spectrum analysis for DNA sequences;JA Berger;In: Seventh International Symposium on Signal Processing and Its Applications,2003

2. The Structure and Function of Complex Networks.;MEJ Newman;SIAM Review.,2003

3. Advanced numerical representation of DNA sequences.;BS Arniker;In: International Conference on Bioscience, Biochemistry and Bioinformatics IPCBEE,2012

4. A coding measure scheme employing electron-ion interaction pseudopotential (EIIP).;AS Nair;Bioinformation.,2006

5. Spectral Analysis of Coding and Non-coding Regions of a DNA Sequence by Parametric and Nonparametric Methods: A comparative Approach;M Roy;Ann Fac Eng Hunedoara,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3