Disentangling personalized treatment effects from “time-of-the-day” confounding in mobile health studies

Author:

Chaibub Neto EliasORCID,Perumal Thanneer M.,Pratap AbhishekORCID,Tediarjo Aryton,Bot Brian M.,Mangravite Lara,Omberg LarssonORCID

Abstract

Ideally, a patient’s response to medication can be monitored by measuring changes in performance of some activity. In observational studies, however, any detected association between treatment (“on-medication” vs “off-medication”) and the outcome (performance in the activity) might be due to confounders. In particular, causal inferences at the personalized level are especially vulnerable to confounding effects that arise in a cyclic fashion. For quick acting medications, effects can be confounded by circadian rhythms and daily routines. Using the time-of-the-day as a surrogate for these confounders and the performance measurements as captured on a smartphone, we propose a personalized statistical approach to disentangle putative treatment and “time-of-the-day” effects, that leverages conditional independence relations spanned by causal graphical models involving the treatment, time-of-the-day, and outcome variables. Our approach is based on conditional independence tests implemented via standard and temporal linear regression models. Using synthetic data, we investigate when and how residual autocorrelation can affect the standard tests, and how time series modeling (namely, ARIMA and robust regression via HAC covariance matrix estimators) can remedy these issues. In particular, our simulations illustrate that when patients perform their activities in a paired fashion, positive autocorrelation can lead to conservative results for the standard regression approach (i.e., lead to deflated true positive detection), whereas negative autocorrelation can lead to anticonservative behavior (i.e., lead to inflated false positive detection). The adoption of time series methods, on the other hand, leads to well controlled type I error rates. We illustrate the application of our methodology with data from a Parkinson’s disease mobile health study.

Funder

National Institute of Neurological Disorders and Stroke

Robert Wood Johnson Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference72 articles.

1. Feasibility of obtaining measures of lifestyle from a smartphone app: the MyHeart Counts cardiovascular health study;MV McConnell;JAMA Cardiology,2017

2. The Asthma Mobile Health Study, a large-scale clinical observational study using ResearchKit;YFY Chan;Nature Biotechnology,2017

3. Remote smartphone monitoring of Parkinson’s disease and individual response to therapy;L Omberg;Nature Biotechnology,2022

4. High accuracy discrimination of Parkinson’s disease participants from healthy controls using smartphones;S Arora;IEEE International Conference on Acoustics, Speech and Signal Processing,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3