Effectively computing transition patterns with privacy-preserved trajectory datasets

Author:

Kim Jong WookORCID,Jang Beakcheol

Abstract

Recent advances in positioning techniques, along with the widespread use of mobile devices, make it easier to monitor and collect user trajectory information during their daily activities. An ever-growing abundance of data about trajectories of individual users paves the way for various applications that utilize user mobility information. One of the most common analysis tasks in these new applications is to extract the sequential transition patterns between two consecutive timestamps from a collection of trajectories. Such patterns have been widely exploited in diverse applications to predict and recommend next user locations based on the current position. Thus, in this paper, we explore the computation of the transition patterns, especially with a trajectory dataset collected using differential privacy, which is a de facto standard for privacy-preserving data collection and processing. Specifically, the proposed scheme relies on geo-indistinguishability, which is a variant of the well-known differential privacy, to collect trajectory data from users in a privacy-preserving manner, and exploits the functionality of the expectation-maximization algorithm to precisely estimate hidden transition patterns based on perturbed trajectory datasets collected under geo-indistinguishability. Experimental results using real trajectory datasets confirm that a good estimation of transition pattern can be achieved with the proposed method.

Funder

Korea government

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

1. S. Feng, X. Li, Y. Zeng, G. Cong, and Y. M. Chee. Personalized ranking metric embedding for next new poi recommendation. in Proceedings of the International Joint Conference on Artificial Intelligence, pp. 2069–2075, 2015.

2. Successive point-of-interest recommendation with local differential privacy;J. S. Kim;IEEE Access,2021

3. Spatial crowdsourcing: A survey;Y. Tong;VLDB Journal,2020

4. Deep Q-network-based route scheduling for TNC vehicles with passengers’ location differential privacy;D. Shi;IEEE Internet of Things Journal,2019

5. Personalized location privacy protection for location-based services in vehicular networks;C. Xu;IEEE Wireless Communications Letters,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3