Applicability of hyperspectral imaging during salinity stress in rice for tracking Na+ and K+ levels in planta

Author:

Pabuayon Isaiah Catalino M.ORCID,Pabuayon Irish Lorraine B.ORCID,Singh Rakesh KumarORCID,Ritchie Glen L.,de los Reyes Benildo G.ORCID

Abstract

The ratio of Na+ and K+ is an important determinant of the magnitude of Na+ toxicity and osmotic stress in plant cells. Traditional analytical approaches involve destructive tissue sampling and chemical analysis, where real-time observation of spatio-temporal experiments across genetic or breeding populations is unrealistic. Such an approach can also be very inaccurate and prone to erroneous biological interpretation. Analysis by Hyperspectral Imaging (HSI) is an emerging non-destructive alternative for tracking plant nutrient status in a time-course with higher accuracy and reduced cost for chemical analysis. In this study, the feasibility and predictive power of HSI-based approach for spatio-temporal tracking of Na+ and K+ levels in tissue samples was explored using a panel recombinant inbred line (RIL) of rice (Oryza sativa L.; salt-sensitive IR29 x salt-tolerant Pokkali) with differential activities of the Na+ exclusion mechanism conferred by the SalTol QTL. In this panel of RILs the spectrum of salinity tolerance was represented by FL499 (super-sensitive), FL454 (sensitive), FL478 (tolerant), and FL510 (super-tolerant). Whole-plant image processing pipeline was optimized to generate HSI spectra during salinity stress at EC = 9 dS m-1. Spectral data was used to create models for Na+ and K+ prediction by partial least squares regression (PLSR). Three datasets, i.e., mean image pixel spectra, smoothened version of mean image pixel spectra, and wavelength bands, with wide differences in intensity between control and salinity facilitated the prediction models with high R2. The smoothened and filtered datasets showed significant improvements over the mean image pixel dataset. However, model prediction was not fully consistent with the empirical data. While the outcome of modeling-based prediction showed a great potential for improving the throughput capacity for salinity stress phenotyping, additional technical refinements including tissue-specific measurements is necessary to maximize the accuracy of prediction models.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3