Assessment of potential transthyretin amyloid cardiomyopathy cases in the Brazilian public health system using a machine learning model

Author:

Zuppo Laper IsabellaORCID,Camacho-Hubner Cecilia,Vansan Ferreira RafaelaORCID,Leite Bertoli de Souza Claudenice,Simões Marcus Vinicius,Fernandes Fabio,de Barros Correia Edileide,de Jesus Lopes de Abreu ArianeORCID,Silva Julian GuilhermeORCID

Abstract

Objectives To identify and describe the profile of potential transthyretin cardiac amyloidosis (ATTR-CM) cases in the Brazilian public health system (SUS), using a predictive machine learning (ML) model. Methods This was a retrospective descriptive database study that aimed to estimate the frequency of potential ATTR-CM cases in the Brazilian public health system using a supervised ML model, from January 2015 to December 2021. To build the model, a list of ICD-10 codes and procedures potentially related with ATTR-CM was created based on literature review and validated by experts. Results From 2015 to 2021, the ML model classified 262 hereditary ATTR-CM (hATTR-CM) and 1,581 wild-type ATTR-CM (wtATTR-CM) potential cases. Overall, the median age of hATTR-CM and wtATTR-CM patients was 66.8 and 59.9 years, respectively. The ICD-10 codes most presented as hATTR-CM and wtATTR-CM were related to heart failure and arrythmias. Regarding the therapeutic itinerary, 13% and 5% of hATTR-CM and wtATTR-CM received treatment with tafamidis meglumine, respectively, while 0% and 29% of hATTR-CM and wtATTR-CM were referred to heart transplant. Conclusion Our findings may be useful to support the development of health guidelines and policies to improve diagnosis, treatment, and to cover unmet medical needs of patients with ATTR-CM in Brazil.

Funder

Pfizer

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3