Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure

Author:

Monroe Luke W.ORCID,Johnson Jack S.,Gutstein Howard B.,Lawrence John P.,Lejeune Keith,Sullivan Ryan C.ORCID,Jen Coty N.

Abstract

Severe viral respiratory diseases, such as SARS-CoV-2, are transmitted through aerosol particles produced by coughing, talking, and breathing. Medical procedures including tracheal intubation, extubation, dental work, and any procedure involving close contact with a patient’s airways can increase exposure to infectious aerosol particles. This presents a significant risk for viral exposure of nearby healthcare workers during and following patient care. Previous studies have examined the effectiveness of plastic enclosures for trapping aerosol particles and protecting health-care workers. However, many of these enclosures are expensive or are burdensome for healthcare workers to work with. In this study, a low-cost plastic enclosure was designed to reduce aerosol spread and viral transmission during medical procedures, while also alleviating issues found in the design and use of other medical enclosures to contain aerosols. This enclosure is fabricated from clear polycarbonate for maximum visibility. A large single-side cutout provides health care providers with ease of access to the patient with a separate cutout for equipment access. A survey of medical providers in a local hospital network demonstrated their approval of the enclosure’s ease of use and design. The enclosure with appropriate plastic covers reduced total escaped particle number concentrations (diameter > 0.01 μm) by over 93% at 8 cm away from all openings. Concentration decay experiments indicated that the enclosure without active suction should be left on the patient for 15–20 minutes following a tracheal manipulation to allow sufficient time for >90% of aerosol particles to settle upon interior surfaces. This decreases to 5 minutes when 30 LPM suction is applied. This enclosure is an inexpensive, easily implemented additional layer of protection that can be used to help contain infectious or otherwise potentially hazardous aerosol particles while providing access into the enclosure.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. COVID-19 Map—Johns Hopkins Coronavirus Resource Center [Internet]. [cited 2021 Dec 19]. Available from: https://coronavirus.jhu.edu/map.html

2. The impact of the COVID-19 pandemic on marginalized populations in the United States: A research agenda;N. Kantamneni;Journal of Vocational Behavior,2020

3. Role of viral bioaerosols in nosocomial infections and measures for prevention and control;Bing-Yuan;Journal of Aerosol Science,2018

4. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: A systematic review;K Tran;PLoS ONE,2012

5. Aerosol transmission is an important mode of influenza A virus spread;BJ Cowling;Nature Communications,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3