Neuroplasticity of peripheral axonal properties after ischemic stroke

Author:

Chen Hung-JuORCID,Tani Jowy,Lin Cindy Shin-Yi,Chang Tsui-San,Lin Yi-Chen,Hsu Ting-WeiORCID,Sung Jia-YingORCID

Abstract

Objective This study investigated how peripheral axonal excitability changes in ischemic stroke patients with hemiparesis or hemiplegia, reflecting the plasticity of motor axons due to corticospinal tract alterations along the poststroke stage. Methods Each subject received a clinical evaluation, nerve conduction study, and nerve excitability test. Nerve excitability tests were performed on motor median nerves in paretic and non-paretic limbs in the acute stage of stroke. Control nerve excitability test data were obtained from age-matched control subjects. Some patients underwent excitability examinations several times in subacute or chronic stages. Results A total of thirty patients with acute ischemic stroke were enrolled. Eight patients were excluded due to severe entrapment neuropathy in the median nerve. The threshold current for 50% compound muscle action potential (CMAP) was higher in paretic limbs than in control subjects. Furthermore, in the cohort with severe patients (muscle power ≤ 3/5 in affected hands), increased threshold current for 50% CMAP and reduced subexcitability were noted in affected limbs than in unaffected limbs. In addition, in the subsequent study of those severe patients, threshold electrotonus increased in the hyperpolarization direction: TEh (100–109 ms), and the minimum I/V slope decreased. The above findings suggest the less excitable and less accommodation in lower motor axons in the paretic limb caused by ischemic stroke. Conclusion Upper motor neuron injury after stroke can alter nerve excitability in lower motor neurons, and the changes are more obvious in severely paretic limbs. The accommodative changes of axons progress from the subacute to the chronic stage after stroke. Further investigation is necessary to explore the downstream effects of an upper motor neuron insult in the peripheral nerve system.

Funder

Wan Fang Hospital

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3