Abstract
Functional integration between two hemispheres is crucial for perceptual binding to occur when visual stimuli are presented in the midline of the visual field. Mima and colleagues (2001) showed using EEG that midline object recognition was associated with task-related decrease in alpha band power (alpha desynchronisation) and a transient increase in interhemispheric coherence. Our objective in the current study was to replicate the results of Mima et al. and to further evaluate interhemispheric effective connectivity during midline object recognition in source space. We recruited 11 healthy adult volunteers and recorded EEG from 64 channels while they performed a midline object recognition task. Task-related power and coherence were estimated in sensor and source spaces. Further, effective connectivity was evaluated using Granger causality. While we were able to replicate the alpha desynchronisation associated with midline object recognition, we could not replicate the coherence results of Mima et al. The data-driven approach that we employed in our study localised the source of alpha desynchronisation over the left occipito-temporal region. In the alpha band, we further observed significant increase in imaginary part of coherency between bilateral occipito-temporal regions during object recognition. Finally, Granger causality analysis between the left and right occipito-temporal regions provided an insight that even though there is bidirectional interaction, the left occipito-temporal region may be crucial for integrating the information necessary for object recognition. The significance of the current study lies in using high-density EEG and applying more appropriate and robust measures of connectivity as well as statistical analysis to validate and enhance our current knowledge on the neural basis of midline object recognition.
Funder
NINDS intramural research program
Ruth L. Kirschtein NRSA award from NINDS
DBT/WT India Alliance fellowship
Master’s research fellowship from the Department of Biotechnology, Ministry of Science and Technology, India
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献