Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers

Author:

Ahmad MuhammadORCID,Protasov Stanislav,Khan Adil Mehmood,Hussain Rasheed,Khattak Asad Masood,Khan Wajahat Ali

Funder

Wajahat Ali Khan

Asad Masood Khattak

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Introduction to the issue on Advances in Remote Sensing Image Processing;VG Camps;IEEE Journal of Selected Topics in Signal Processing,2011

2. Metric Similarity Regularizer to Enhance Pixel Similarity Performance for Hyperspectral Unmixing;M Ahmad;Elsevier Optik—International Journal for Light and Electron Optics,2017

3. Signal Theory Methods in Multispectral Remote Sensing;GDA Land,2003

4. Hyperspectral Remote Sensing Data Analysis and Future Challenges;JB Dias;IEEE Geoscience and Remote Sensing Magazine,2013

5. Fusion of Supervised and Unsupervised Learning Paradigms for Improved Classification of Hyperspectral Images;N Alajlan;Information Science,2012

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Progressive Stacking Pseudoinverse Learning Framework via Active Learning in Random Subspaces;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-05

2. Partial Label Learning With Focal Loss for Sea Ice Classification Based on Ice Charts;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. Conventional to Deep Ensemble Methods for Hyperspectral Image Classification: A Comprehensive Survey;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Mitigating Hughes Phenomenon: Improving Hyperspectral Imaging Classification Through Active Learning for Generalization Enhancement;2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP);2023-12-15

5. A sample selection method based on similarity measure and fuzziness for crop classification from hyperspectral data;Advances in Space Research;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3