Abstract
Objective
This study compared neuromuscular control under two fatigue protocols during anticipated and unanticipated change of direction (COD) maneuvers and evaluated their effects on the risk of non-contact ACL injuries.
Method
Forty-five female soccer players (mean age: 22.22 ± 2.24 years; mean height: 166.24 ± 3.33 cm; mean mass: 59.84 ± 5.03 kg) were divided into three groups: functional fatigue (Soccer specific fatigue ptotocol-SOFT90), non-functional fatigue (Bruce protocol), and control group. Before and after the implementation of neuromuscular control fatigue protocols were evaluated using the cutting motion assessment score tool (CMAS). Two-dimensional (2D) videos were recorded during anticipated and unanticipated COD trials for both dominant and non-dominant legs.
Results
Significant time effects (p < 0.05) and group-time interactions (p < 0.05) were observed in both anticipated and unanticipated conditions for both dominant and non-dominant legs after the fatigue protocols. The functional fatigue group exhibited higher CMAS changes, indicating poorer movement quality following fatigue. Notably, the non-dominant leg displayed amplified deficits during unanticipated COD maneuvers following the functional fatigue protocol.
Conclusions
Fatigue significantly impairs neuromuscular control, particularly in unanticipated COD situations, which increases the risk of non-contact ACL injuries. To mitigate this risk, coaches, trainers, and medical professionals should prioritize targeted training and injury prevention strategies, focusing on the non-dominant leg during unanticipated COD maneuvers.
Publisher
Public Library of Science (PLoS)