Advancing automatic text summarization: Unleashing enhanced binary multi-objective grey wolf optimization with mutation

Author:

Sheikh Muhammad AyyazORCID,Bashir MaryamORCID,Sudddle Mehtab KiranORCID

Abstract

Automatic Text Summarization (ATS) is gaining popularity as there is a growing demand for a system capable of processing extensive textual content and delivering a concise, yet meaningful, relevant, and useful summary. Manual summarization is both expensive and time-consuming, making it impractical for humans to handle vast amounts of data. Consequently, the need for ATS systems has become evident. These systems encounter challenges such as ensuring comprehensive content coverage, determining the appropriate length of the summary, addressing redundancy, and maintaining coherence in the generated summary. Researchers are actively addressing these challenges by employing Natural Language Processing (NLP) techniques. While traditional methods exist for generating summaries, they often fall short of addressing multiple aspects simultaneously. To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. The performance of this enhanced algorithm is assessed by comparing it with state-of-the-art algorithms using the DUC2002 dataset. Experimental results demonstrate that the proposed algorithm significantly outperforms the compared approaches.

Publisher

Public Library of Science (PLoS)

Reference30 articles.

1. Automatic text summarization: A comprehensive survey;WS El-Kassas;Expert Systems with Applications,2021

2. Automatic text summarization: A comprehensive survey;WS El-Kassas;Expert Systems with Applications,2021

3. Abstractive text summarization using LSTM-CNN based deep learning;S Song;Multimedia Tools and Applications,2019

4. Aries A, Hidouci WK, et al. Automatic text summarization: What has been done and what has to be done. arXiv preprint arXiv:190400688. 2019;.

5. Social profiling: A review, taxonomy, and challenges;M Bilal;Cyberpsychology, Behavior, and Social Networking,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3