An improved mountain gazelle optimizer based on chaotic map and spiral disturbance for medical feature selection

Author:

Li YingORCID,Geng YanyuORCID,Sheng Huankun

Abstract

Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. First, the gazelle population is initialized using iterative chaotic map with infinite collapses (ICMIC) mapping, which increases the diversity of the population. Second, a nonlinear control factor is introduced to balance the exploration and exploitation components of the algorithm. Individuals in the population are perturbed using a spiral perturbation mechanism to enhance the local search capability of the algorithm. Finally, a neighborhood search strategy is used for the optimal individuals to enhance the exploitation and convergence capabilities of the algorithm. The superior ability of the IMGO algorithm to solve continuous problems is demonstrated on 23 benchmark datasets. Then, BIMGO is evaluated on 16 medical datasets of different dimensions and compared with 8 well-known metaheuristic algorithms. The experimental results indicate that BIMGO outperforms the competing algorithms in terms of the fitness value, number of selected features and sensitivity. In addition, the statistical results of the experiments demonstrate the significantly superior ability of BIMGO to select the most effective features in medical datasets.

Publisher

Public Library of Science (PLoS)

Reference73 articles.

1. Heart Disease Identification Method Using Machine Learning classification in E-Healthcare.;JP Li;IEEE Access,2020

2. The challenge of medical diagnosis: A primer on principles, probability, process and pitfalls.;KS Jacob;Natl Med J India,2015

3. Clinical profiles in acute heart failure: an urgent need for a new approach;B Chapman;ESC Heart Fail,2019

4. Chaotic-based divide-and-conquer feature selection method and its application in cardiac arrhythmia classification.;M Ayar;J Supercomput,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3