Selection of reference miRNAs for RT-qPCR assays in endometriosis menstrual blood-derived mesenchymal stem cells

Author:

Hacimoto Sabrina Yukari Santos,Cressoni Ana Clara Lagazzi,Silva Lilian Eslaine Costa Mendes da,Padovan Cristiana Carolina,Ferriani Rui Alberto,Rosa-e-Silva Júlio César,Meola JulianaORCID

Abstract

Choosing appropriate reference genes or internal controls to normalize RT-qPCR data is mandatory for the interexperimental reproducibility of gene expression data obtained by RT-qPCR in most studies, including those on endometriosis. Particularly for miRNAs, the choice for reference genes is challenging because of their physicochemical and biological characteristics. Moreover, the retrograde menstruation theory, mesenchymal stem cells in menstrual blood (MenSCs), and changes in post-transcriptional regulatory processes through miRNAs have gained prominence in the scientific community as important players in endometriosis. Therefore, we originally explored the stability of 10 miRNAs expressions as internal control candidates in conditions involving the two-dimensional culture of MenSCs from healthy women and patients with endometriosis. Here, we applied multiple algorithms (geNorm, NormFinder, Bestkeeper, and delta Ct) to screen reference genes and assessed the comprehensive stability classification of miRNAs using RefFinder. Pairwise variation calculated using geNorm identified three miRNAs as a sufficient number of reference genes for accurate normalization. MiR-191-5p, miR-24-3p, and miR-103a-3p were the best combination for suitable gene expression normalization. This study will benefit similar research, but is also attractive for regenerative medicine and clinics that use MenSCs, miRNA expression, and RT-qPCR.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

The National Institute of Hormones and Women’s Health (Hormona)-CNPq

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3