Source and variation of the amazing live Sea-Monkey microbiome

Author:

Holt Corey C.ORCID,del Campo Javier,Keeling Patrick J.

Abstract

An embryonic diapause in unfavourable conditions has allowed brine shrimp to thrive in hypersaline environments and, unexpectedly, mail-order sachets and small, novelty tanks. Marketed as Sea-Monkeys®, each kit involves a 3-step process to generate adult Artemia within a matter of weeks. Whether these kits also allow for the maintenance of a host-associated microbiome is unclear. Therefore, comparing five replicate tanks under the same culture conditions, we sequenced the 16S ribosomal small subunit (SSU) gene to analyse bacterial community compositions in adults, their surrounding tank water, and their feed. Adult Sea-Monkeys® harboured a bacterial microbiome that was clearly distinguishable from the tank water and food. Furthermore, individual tanks had a notable effect on fine-scale microbiome variation. Several Sea-Monkey bacterial variants appeared absent in environmental samples and included genera (Leucobacter and Microbacterium) known to confer desiccation resistance in other hosts. Although Sea-Monkeys® taxonomy is unclear, phylogenetic inference of the cytochrome c oxidase I (COXI) gene from the host animal suggests Sea-Monkeys® belong to the Artemia franciscana ‘superspecies’. Overall, Sea-Monkeys® kits appear to be a convenient and scalable mesocosm for the study of host-microbiome interactions and could serve as a useful tool for future invertebrate microbiome research, outreach, and education.

Funder

Hakai Institute

Gordon and Betty Moore Foundation

Publisher

Public Library of Science (PLoS)

Reference59 articles.

1. Past, present and future scenarios for SDG-aligned brine shrimp Artemia aquaculture;P Sorgeloos;FAO Aquaculture Newsletter,2021

2. New insights into survival strategies of tardigrades.;N Møbjerg;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology.,2021

3. Dormancy in rotifers;JJ Gilbert;Transactions of the American Microscopical Society,1974

4. Signatures of the evolution of parthenogenesis and cryptobiosis in the genomes of panagrolaimid nematodes;PH Schiffer;iScience,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3