Design and performance investigation of metamaterial-inspired dual band antenna for WBAN applications

Author:

Ali Usman,Ullah Sadiq,Basir Abdul,Yan Sen,Ren Hongwei,Kamal Babar,Matekovits LadislauORCID

Abstract

This paper presents the design and analysis of a metamaterial-based compact dual-band antenna for WBAN applications. The antenna is designed and fabricated on a 0.254 mm thick semi-flexible substrate, RT/Duroid® 5880, with a relative permittivity of 2.2 and a loss tangent of 0.0009. The total dimensions of the antenna are 0.26λo×0.19λo×0.002λo, where λo corresponds to the free space wavelength at 2.45 GHz. To enhance overall performance and isolate the antenna from adverse effects of the human body, it is backed by a 2×2 artificial magnetic conductor (AMC) plane. The total volume of the AMC integrated design is 0.55λo×0.55λo×0.002λo. The paper investigates the antenna’s performance both with and without AMC integration, considering on- and off-body states, as well as various bending conditions in both E and H-planes. Results indicate that the AMC-integrated antenna gives improved measured gains of 6.61 dBi and 8.02 dBi, with bandwidths of 10.12% and 7.43% at 2.45 GHz and 5.80 GHz, respectively. Furthermore, the AMC integrated antenna reduces the specific absorption rate (SAR) to (>96%) and (>93%) at 2.45 GHz and 5.80 GHz, meeting FCC requirements for low SAR at both frequencies when placed in proximity to the human body. CST Microwave Studio (MWS) and Ansys High-Frequency Structure Simulation (HFSS), both full-wave simulation tools, are utilized to evaluate the antenna’s performance and to characterize the AMC unit cell. The simulated and tested results are in mutual agreement. Due to its low profile, high gain, adequate bandwidth, low SAR values, and compact size, the AMC integrated antenna is considered suitable for WBAN applications.

Publisher

Public Library of Science (PLoS)

Reference61 articles.

1. The role and challenges of body channel communication in wearable flexible electronics;B Zhao;IEEE Transactions on Biomedical Circuits and Systems,2020

2. On the use of knitted antennas and inductively coupled RFID tags for wearable applications;D Patron;IEEE transactions on biomedical circuits and systems,2016

3. Introduction to Body Centric Wireless Communication.;SK Koul;Wearable Antennas and Body Centric Communication: Present and Future,2021

4. Electromagnetics of Body Area Networks

5. Ultra wideband loop antenna on contact with human body tissues;T Tuovinen;IET Microwaves, Antennas & Propagation,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3