Improved pore structure characterization and classification of strong diagenesis sandstones by data-mining analytics in Tazhong area, Tarim Basin

Author:

Tian Feng,Wang XidongORCID,Yuan Xinyi,Wang Di

Abstract

The Silurian system in Tazhong area is characterized by extensive, low-abundance lithological reservoirs with strong diagenesis, resulting in significant heterogeneity. The complex pore structure in this area significantly impacts fluid control, making accurate characterization and classification of pore structures crucial for understanding reservoir properties and their influence on oil and gas distribution. Based on 314 Mercury Injection Capillary Pressure (MICP) samples in combination with core slices and thin casting slices observation, a pipeline of characterization and classification scheme by data-mining analytics of strong diagenesis sandstone pore structure types in the study zone is established, and the characteristics of different pore structures are clarified. According to the pore structure parameter abstracted by MICP data compression and variable analysis based on hierarchical clustering and principal component analysis (PCA) analysis, the variables are reasonably evaluated and screened, and the screened variables can be divided into three groups: mean pore throat radius-maximum pore throat radius-median pore throat radius-pore throat diameter mean variable group, microscopic mean coefficient variable group, and median pressure displacement pressure-relative sorting coefficient variable group. The combination of classification schemes analysed by decision tree model and linear discriminant analysis (LDA) model was determined. In the two-dimensional projection diagram of LDA model, a relatively obvious distribution of low displacement pressure, middle displacement pressure and high displacement pressure was obtained, and three distribution lines were nearly parallel. Based on the relevant information, 6 combined classification schemes suitable for final pore structure modelling were determined verified by microscopic observation. The correct characterization and classification of pore structure can be applied to the prediction of pore type, which can be used to improve the prediction of oil and gas distribution and oil and gas recovery in the future.

Funder

Tianchi talent project

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3