Design of health information management model for elderly care using an advanced higher-order hybrid clustering algorithm from the perspective of sports and medicine integration

Author:

Zhao NingORCID,Zhao Wenkai,Tang Xiaoliang,Jiao Chuanming,Zhang Zhong

Abstract

In the context of integrating sports and medicine domains, the urgent resolution of elderly health supervision requires effective data clustering algorithms. This paper introduces a novel higher-order hybrid clustering algorithm that combines density values and the particle swarm optimization (PSO) algorithm. Initially, the traditional PSO algorithm is enhanced by integrating the Global Evolution Dynamic Model (GEDM) into the Distribution Estimation Algorithm (EDA), constructing a weighted covariance matrix-based GEDM. This adapted PSO algorithm dynamically selects between the Global Evolution Dynamic Model and the standard PSO algorithm to update population information, significantly enhancing convergence speed while mitigating the risk of local optima entrapment. Subsequently, the higher-order hybrid clustering algorithm is formulated based on the density value and the refined PSO algorithm. The PSO clustering algorithm is adopted in the initial clustering phase, culminating in class clusters after a finite number of iterations. These clusters then undergo the application of the density peak search algorithm to identify candidate centroids. The final centroids are determined through a fusion of the initial class clusters and the identified candidate centroids. Results showcase remarkable improvements: achieving 99.13%, 82.22%, and 99.22% for F-measure, recall, and precision on dataset S1, and 75.22%, 64.0%, and 64.4% on dataset CMC. Notably, the proposed algorithm yields a 75.22%, 64.4%, and 64.6% rate on dataset S, significantly surpassing the comparative schemes’ performance. Moreover, employing the text vector representation of the LDA topic vector model underscores the efficacy of the higher-order hybrid clustering algorithm in efficiently clustering text information. This innovative approach facilitates swift and accurate clustering of elderly health data from the perspective of sports and medicine integration. It enables the identification of patterns and regularities within the data, facilitating the formulation of personalized health management strategies and addressing latent health concerns among the elderly population.

Publisher

Public Library of Science (PLoS)

Reference21 articles.

1. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data[J].;M Ikotun A;Information Sciences,2023

2. Integrative generalized convex clustering optimisation and feature selection for mixed multi-view data[J].;M Wang;The Journal of Machine Learning Research,2021

3. Particle swarm optimisation algorithm: an overview[J].;D Wang;Soft computing,2018

4. The k-means algorithm: a comprehensive survey and performance evaluation[J];M Ahmed;Electronics,2020

5. A unified form of fuzzy C-means and K-means algorithms and its partitional implementation[J].;D Borlea I;Knowledge-Based Systems,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3