Global transcriptome analysis identifies critical functional modules associated with multiple abiotic stress responses in microalgae Chromochloris zofingiensis

Author:

Panahi BahmanORCID

Abstract

In the current study, systems biology approach was applied to get a deep insight regarding the regulatory mechanisms of Chromochloris zofingiensis under overall stress conditions. Meta-analysis was performed using p-values combination of differentially expressed genes. To identify the informative models related to stress conditions, two distinct weighted gene co-expression networks were constructed and preservation analyses were performed using medianRankand Zsummary algorithms. Moreover, functional enrichment analysis of non-preserved modules was performed to shed light on the biological performance of underlying genes in the non-preserved modules. In the next step, the gene regulatory networks between top hub genes of non-preserved modules and transcription factors were inferred using ensemble of trees algorithm. Results showed that the power of beta = 7 was the best soft-thresholding value to ensure a scale-free network, leading to the determination of 12 co-expression modules with an average size of 128 genes. Preservation analysis showed that the connectivity pattern of the six modules including the blue, black, yellow, pink, greenyellow, and turquoise changed during stress condition which defined as non-preserved modules. Examples of enriched pathways in non-preserved modules were Oxidative phosphorylation”, “Vitamin B6 metabolism”, and “Arachidonic acid metabolism”. Constructed regulatory network between identified TFs and top hub genes of non-preserved module such as Cz06g10250, Cz03g12130 showed that some specific TFs such as C3H and SQUAMOSA promoter binding protein (SBP) specifically regulates the specific hubs. The current findings add substantially to our understanding of the stress responsive underlying mechanism of C. zofingiensis for future studies and metabolite production programs.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3