Common sleep data pipeline for combined data sets

Author:

Strøm JesperORCID,Engholm Andreas Larsen,Lorenzen Kristian Peter,Mikkelsen Kaare B.

Abstract

Over the past few years, sleep research has shown impressive performance of deep neural networks in the area of automatic sleep-staging. Recent studies have demonstrated the necessity of combining multiple data sets to obtain sufficiently generalizing results. However, working with large amounts of sleep data can be challenging, both from a hardware perspective and because of the different preprocessing steps necessary for distinct data sources. Here we review the possible obstacles and present an open-source pipeline for automatic data loading. Our solution includes both a standardized data store as well as a ‘data serving’ portion which can be used to train neural networks on the standardized data, allowing for different configuration options for different studies and machine learning designs. The pipeline, including implementation, is made public to ensure better and more reproducible sleep research.

Funder

Danish e-Infrastructure Cooperation

Publisher

Public Library of Science (PLoS)

Reference13 articles.

1. Mueller R. Sleep Data—National Sleep Research Resource—NSRR. en. url: https://sleepdata.org/ (visited on 08/01/2023).

2. U–Sleep’s resilience to AASM guidelines;L Fiorillo;npj Digital Medicine,2023

3. Interrater reliability of sleep stage scoring: a meta-analysis;YJ Lee;Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine,2022

4. Multicentre sleep-stage scoring agreement in the Sleep Revolution project;S Nikkonen;Journal of Sleep Research,2023

5. U–Sleep: resilient high-frequency sleep staging;M Perslev;npj Digital Medicine,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3