Microvesicles from quiescent and TGF-β1 stimulated hepatic stellate cells: Divergent impact on hepatic vascular injury

Author:

Xie Jianlong,Ye Zhirong,Xu Xiaobing,Chang Anzhi,Yang Ziyi,Wu Qin,Pan Qunwen,Wang Yan,Chen Yanyu,Ma Xiaotang,Miao HuilaiORCID

Abstract

Background This study evaluated the effect of microvesicles(MVs) from quiescent and TGF-β1 stimulated hepatic stellate cells (HSC-MVs, TGF-β1HSC-MVs) on H2O2-induced human umbilical vein endothelial cells (HUVECs) injury and CCl4-induced rat hepatic vascular injury. Methods HUVECs were exposed to hydrogen peroxide (H2O2) to establish a model for vascular endothelial cell injury. HSC-MVs or TGF-β1HSC-MVs were co-cultured with H2O2-treated HUVECs, respectively. Indicators including cell survival rate, apoptosis rate, oxidative stress, migration, invasion, and angiogenesis were measured. Simultaneously, the expression of proteins such as PI3K, AKT, MEK1+MEK2, ERK1+ERK2, VEGF, eNOS, and CXCR4 was assessed, along with activated caspase-3. SD rats were intraperitoneally injected with CCl4 twice a week for 10 weeks to induce liver injury models. HSC-MVs or TGF-β1HSC-MVs were injected into the tail vein of rats. Liver and hepatic vascular damage were also detected. Results In H2O2-treated HUVECs, HSC-MVs increased cell viability, reduced cytotoxicity and apoptosis, improved oxidative stress, migration, and angiogenesis, and upregulated protein expression of PI3K, AKT, MEK1/2, ERK1/2, VEGF, eNOS, and CXCR4. Conversely, TGF-β1HSC-MVs exhibited opposite effects. CCl4- induced rat hepatic injury model, HSC-MVs reduced the release of ALT and AST, hepatic inflammation, fatty deformation, and liver fibrosis. HSC-MVs also downregulated the protein expression of CD31 and CD34. Conversely, TGF-β1HSC-MVs demonstrated opposite effects. Conclusion HSC-MVs demonstrated a protective effect on H2O2-treated HUVECs and CCl4-induced rat hepatic injury, while TGF-β1HSC-MVs had an aggravating effect. The effects of MVs involve PI3K/AKT/VEGF, CXCR4, and MEK/ERK/eNOS pathways.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3