Key extracellular proteins and TF-miRNA co-regulatory network in diabetic foot ulcer: Bioinformatics and experimental insights

Author:

Lin GuanlinORCID,Liu XimingORCID

Abstract

Background Diabetic foot ulcers (DFUs), a serious complication of diabetes, are associated with abnormal extracellular protein (EP) metabolism. The identification of key EPs and their regulatory networks is crucial for the understanding of DFU formation and development of effective treatments. In this study, a large-scale bioinformatics analysis was conducted to identify potential therapeutic targets and experimental validation was performed to ensure the reliability and biological relevance of the findings. Methods Due to the comprehensive profiling of DFU samples provided by the GSE80178 dataset, we initially selected it to derive differentially expressed genes (DEGs) associated with DFU. Subsequently, utilizing the UniProt database and annotated EP list from the Human Protein Atlas annotation database, we screened for extracellular protein–related differentially expressed genes (EP-DEGs) due to their crucial role in the pathogenesis and healing of DFU. We examined EP-DEG pathway enrichment and protein-protein interaction networks, analyzed paired full-thickness skin tissue samples from 24 patients with DFUs and healthy controls, and performed polymerase chain reaction (PCR) experiments to validate candidate genes. Ultimately, we constructed a transcription factor (TF)-microRNA (miRNA)–hub gene co-regulatory network to explore upstream and downstream regulatory connections based on validated DEGs. Results Four crucial candidate genes (FMOD, LUM, VCAN, and S100A12) were identified and verified via PCR analysis. The TF-miRNA-hub EP-DEG regulatory network contained the pivotal TFs TRIM28 and STAT3 and the miRNAs hsa-mir-20a-5p, hsa-miR-21, and hsa-miR-203. Conclusion The findings of this study advance our understanding of the pathology of DFU by defining key roles of specific EPs and elucidating a comprehensive regulatory network. These insights pave the way for novel approaches to improve DFU treatment outcomes.

Funder

Postdoctoral Research Foundation of China

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3