Image denoising method integrating ridgelet transform and improved wavelet threshold

Author:

Li Bingbing,Cong Yao,Mo HongweiORCID

Abstract

In the field of image processing, common noise types include Gaussian noise, salt and pepper noise, speckle noise, uniform noise and pulse noise. Different types of noise require different denoising algorithms and techniques to maintain image quality and fidelity. Traditional image denoising methods not only remove image noise, but also result in the detail loss in the image. It cannot guarantee the clean removal of noise information while preserving the true signal of the image. To address the aforementioned issues, an image denoising method combining an improved threshold function and wavelet transform is proposed in the experiment. Unlike traditional threshold functions, the improved threshold function is a continuous function that can avoid the pseudo Gibbs effect after image denoising and improve image quality. During the process, the output image of the finite ridge wave transform is first combined with the wavelet transform to improve the denoising performance. Then, an improved threshold function is introduced to enhance the quality of the reconstructed image. In addition, to evaluate the performance of different algorithms, different densities of Gaussian noise are added to Lena images of black, white, and color in the experiment. The results showed that when adding 0.010.01 variance Gaussian noise to black and white images, the peak signal-to-noise ratio of the research method increased by 2.58dB in a positive direction. The mean square error decreased by 0.10dB. When using the algorithm for denoising, the research method had a minimum denoising time of only 13ms, which saved 9ms and 3ms compared to the hard threshold algorithm (Hard TA) and soft threshold algorithm (Soft TA), respectively. The research method exhibited higher stability, with an average similarity error fluctuating within 0.89%. The above results indicate that the research method has smaller errors and better system stability in image denoising. It can be applied in the field of digital image denoising, which can effectively promote the positive development of image denoising technology to a certain extent.

Funder

the Science and Technology Research Projects of the Education Office of Jilin Province

the Jilin Business and Technology College

Publisher

Public Library of Science (PLoS)

Reference25 articles.

1. Natural digital image mixed noise removal using regularization Perona-Malik model and pulse coupled neural networks;A. Khmag;Soft Comput.,2023

2. A robust deformed convolutional neural network (CNN) for image denoising,";Q. Zhang;CAAI,2022

3. “Review of Image Denoising Algorithms Based on the Wavelet Transformation;A. R. R. AsemKhmag;International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE),2014

4. Review of Image Denoising Algorithms Based on the Wavelet Transformation;A. Khmag;Int. J. Adv. Trends Comput. Sci. Eng. (IJATCSE),2014

5. “Natural image noise removal using nonlocal means and hidden Markov models in transform domain;A. Khmag;The Visual Computer,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3