Short-term forecasting of vegetable prices based on LSTM model—Evidence from Beijing’s vegetable data

Author:

Zhang Qi,Yang WeijiaORCID,Zhao Anping,Wang Xiaodong,Wang Zengfei,Zhang Lin

Abstract

The vegetable sector is a vital pillar of society and an indispensable part of the national economic structure. As a significant segment of the agricultural market, accurately forecasting vegetable prices holds significant importance. Vegetable market pricing is subject to a myriad of complex influences, resulting in nonlinear patterns that conventional time series methodologies often struggle to decode. In this paper, we exploit the average daily price data of six distinct types of vegetables sourced from seven key wholesale markets in Beijing, spanning from 2009 to 2023. Upon training an LSTM model, we discovered that it exhibited exceptional performance on the test dataset. Demonstrating robust predictive performance across various vegetable categories, the LSTM model shows commendable generalization abilities. Moreover, LSTM model has a higher accuracy compared to several machine learning methods, including CNN-based time series forecasting approaches. With R2 score of 0.958 and MAE of 0.143, our LSTM model registers an enhancement of over 5% in forecast accuracy relative to conventional machine learning counterparts. Therefore, by predicting vegetable prices for the upcoming week, we envision this LSTM model application in real-world settings to aid growers, consumers, and policymakers in facilitating informed decision-making. The insights derived from this forecasting research could augment market transparency and optimize supply chain management. Furthermore, it contributes to the market stability and the balance of supply and demand, offering a valuable reference for the sustainable development of the vegetable industry.

Funder

National Social Science Fund of China

Publisher

Public Library of Science (PLoS)

Reference42 articles.

1. Short term forecasting of Australian wool prices;F G Jarrett;Australian Economic Paper,1965

2. Determining fluctuations and cycles of corn price in Iran;B Fakari;Agricultural Economics,2013

3. Forecasting China’s Vegetable prices based on the ARMA model: Cases of Chinese Cabbage, Cucumber and Tomato;MM Zhou;Yangtze Vegetables,2015

4. Construction of agricultural product price forecasting model;YQ Xu;Statistics & Decision,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3