Comprehensive evaluation and application of woody plants in the green spaces of parks in saline–Alkaline areas from a low-carbon perspective: A case study of Tianjin Qiaoyuan Park

Author:

Bai JieyuanORCID,Wang HongchengORCID

Abstract

The field of landscape architecture has placed significant emphasis on low-carbon landscapes due to the increasing challenges posed by global warming and environmental deterioration in recent years. The soil ecological conditions in saline–alkaline areas are characterized by poor quality, resulting in suboptimal growth conditions for trees. This, in turn, hampers their ability to effectively sequester carbon, thereby diminishing the potential benefits of carbon sinks. Additionally, the maintenance of tree landscapes in such areas generates more carbon emissions than does conventional green land, making it difficult to reap the benefits of tree-based carbon. A comprehensive evaluation of trees in green park spaces in saline–alkaline areas is conducted from a low-carbon perspective; by identifying the dominant tree species that are well suited to greening, we can offer a precise scientific foundation for implementing low-carbon greening initiatives in cities situated in saline–alkaline environments. Therefore, as a case study, this study investigates Tianjin Qiaoyuan Park, a typical saline park in the Bohai Bay region. The hierarchical analysis method (AHP) was used to evaluate 50 species of trees and shrubs in the park from a low-carbon perspective. The results show that the evaluation system consists of four criterion layers and 15 indicator factors. The relative weight of the criterion layer followed the order of habitat adaptability (B2) > carbon sequestration capacity (B1) > low-carbon management and conservation (B3) > landscape aesthetics (B4). The indicator layer assigned greater weight values to net assimilation (C1), saline and alkaline adaptability (C3), drought tolerance (C4), irr igation and fertilization needs (C8), growth rate (C2), and adaptability to barrenness (C5). The trees were classified into five distinct categories, with each exhibiting significant variation in terms of the strengths and weaknesses of the indicators. According to the comprehensive score, the trees were categorized into three levels. The Grade I plants exhibited the best carbon efficiency performance, comprising a total of 12 species (e.g. Sabina chinensis, Fraxinus chinensis ’Aurea’ and Hibiscus syriacu), and demonstrated superior performance in all aspects. Grade II trees, consisting of 26 species (e.g Pinus tabuliformis, Paulownia fortunei, Ligustrum × vicaryi), had the second-highest comprehensive score. Moreover, Grade III trees, encompassing 12 species (e.g Acer mono, Cedrus deodara, Magnolia denudata), exhibited lower comprehensive scores. The extensive use of Grade I and II tree species is recommended in the implementation of low-carbon greening projects in the Bohai Bay region, while Grade III tree species should be judiciously utilized. The findings of this research can serve as a valuable resource for the scientific identification of tree species that are suitable for urban park green spaces in the Bohai Bay region, which is characterized by predominantly saline and alkaline soil. Additionally, the development of an evaluation system can guide the selection of low-carbon tree species when evaluating other types of saline and alkaline lands.

Publisher

Public Library of Science (PLoS)

Reference76 articles.

1. Challenges toward carbon neutrality in China: Strategies and countermeasures.;X Zhao;Resour Conserv Recycl.,2022

2. BRICS countries’ climate policies, energy structures, and carbon emissions towards carbon neutrality;H Zheng;China Population Resources Environmental Pollution,2023

3. Soil salinization management for sustainable development: A review;A. Singh;J Environ Manage,2021

4. Soil Respiration from Different Halophytic Plants in Coastal Saline-Alkali Soils.;X Li;Pol J Environ Stud.,2020

5. Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China;L Liu;Biology (Basel).,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3