Machine learning for differentiating lung squamous cell cancer from adenocarcinoma using Clinical-Metabolic characteristics and 18F-FDG PET/CT radiomics

Author:

Zhang YalinORCID,Liu Huiling,Chang Cheng,Yin Yong,Wang RuozhengORCID

Abstract

Noninvasive differentiation between the squamous cell carcinoma (SCC) and adenocarcinoma (ADC) subtypes of non-small cell lung cancer (NSCLC) could benefit patients who are unsuitable for invasive diagnostic procedures. Therefore, this study evaluates the predictive performance of a PET/CT-based radiomics model. It aims to distinguish between the histological subtypes of lung adenocarcinoma and squamous cell carcinoma, employing four different machine learning techniques. A total of 255 Non-Small Cell Lung Cancer (NSCLC) patients were retrospectively analyzed and randomly divided into the training (n = 177) and validation (n = 78) sets, respectively. Radiomics features were extracted, and the Least Absolute Shrinkage and Selection Operator (LASSO) method was employed for feature selection. Subsequently, models were constructed using four distinct machine learning techniques, with the top-performing algorithm determined by evaluating metrics such as accuracy, sensitivity, specificity, and the area under the curve (AUC). The efficacy of the various models was appraised and compared using the DeLong test. A nomogram was developed based on the model with the best predictive efficiency and clinical utility, and it was validated using calibration curves. Results indicated that the logistic regression classifier had better predictive power in the validation cohort of the radiomic model. The combined model (AUC 0.870) exhibited superior predictive power compared to the clinical model (AUC 0.848) and the radiomics model (AUC 0.774). In this study, we discovered that the combined model, refined by the logistic regression classifier, exhibited the most effective performance in classifying the histological subtypes of NSCLC.

Funder

Science and Technology Foundation of Xinjiang Uygur Autonomous Region

Special Funds Project of Central Guidance on Local Science and Technology Development

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;H Sung;CA: A Cancer Journal for Clinicians,2021

2. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study;JD Bradley;The Lancet Oncology,2015

3. Novel biomarkers that assist in accurate discrimination of squamous cell carcinoma from adenocarcinoma of the lung;K Takamochi;BMC Cancer,2016

4. Cancer in Canada: Stage at diagnosis;S Bryan;Health Reports, Health Reports,2018

5. What’s new in non-small cell lung cancer for pathologists the importance of accurate subtyping, EGFR mutations and ALK rearrangements;WA Cooper;Pathology,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer;Indian Journal of Surgical Oncology;2024-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3