Re-measurement of agricultural carbon emission rates: Drivers, regional differences and dynamic evolution

Author:

Guo Yan,Chen MinORCID

Abstract

This research paper introduces a novel approach by combining a Backpropagation (BP) neural network with a non-angular and non-radial directional distance function to construct a BPNN-DDF model. This innovative model evaluates, decomposes, and analyzes China’s agricultural sector’s carbon emission rate across nine key subregions between 2010 and 2021. The key findings of this study are that China’s agricultural carbon emission rate is decreasing, primarily due to technological advancements rather than technological efficiency. Subregions with robust economies and stable climates exhibit higher carbon emission efficiency, whereas those with underdeveloped economies, low agricultural technology, and volatile climates show relatively lower efficiency. The Dagum Gini coefficient analysis reveals a widening disparity in carbon emission rates among agricultural subregions, escalating from 0.174 in 2010 to 0.425 in 2021, indicating a growing gap between subregions that demands immediate attention. The kernel density distribution demonstrates an overall upward trend in China’s carbon emission efficiency but also highlights an increasing divergence among subregions, particularly between the South China Area, the Huang-Huai-Hai Plain, and other regions. Therefore, this paper posits that strategies focusing on technological progress, sustainable agricultural development, regional development initiatives, and addressing inter-subregional imbalances will be crucial pathways for China’s future low-carbon agricultural development.

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. Total factor carbon emission performance: A Malmquist index analysis;P. Zhou;Energy Economics,2010

2. The FAOSTAT database of greenhouse gas emissions from agriculture;F. N. Tubiello;Environmental Research Letters,2013

3. Temporal and spatial analysis of county agricultural efficiency in Anhui Province based on SSBM-ESDA model (in Chinese).;H. F. Wang;Economic Geography,2020

4. Spatial evolution and its drivers of regional agroecological efficiency in China from the perspective of water footprint and gray water footprint;S. Y. Wang;Scientia Geographica Sinica,2021

5. Assessing agricultural eco-efficiency in Italian regions;B. Coluccia;Ecological Indicators,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3