From an obliquely falling rod in a viscous fluid to the motion of suspended magnetic bead chains that are driven by a gradient magnetic field and that make an arbitrary angle with the magnetic force vector: A Stokes flow study

Author:

Deissler Robert J.ORCID,Al Helo Rose,Brown Robert

Abstract

In view of the growing role of magnetic particles under magnetic field influence in medical and other applications, and perforce the bead chaining, it is important to understand more generally the chain dynamics. As is well known, in the presence of a magnetic field, magnetic beads tend to form chains that are aligned with the magnetic field vector. In addition, if there is a magnetic field gradient, there will be a magnetic force acting on this chain. The main goal of the present research is to study the motion of a magnetic bead chain that makes an arbitrary angle with the magnetic force vector in the Stokes flow limit, that is, in the limit of zero Reynolds number. We used the public-domain computer program HYDRO++ to calculate the mobility matrix, which relates the magnetic force acting on the chain to the velocity of the chain, for a chain of N beads making an arbitrary angle with the magnetic force vector. Because of the presence of off-diagonal elements of the mobility matrix, as the chain is drawn in the direction of the magnetic force, it is also deflected to the side. We derived analytic solutions for this motion. Also, for bead chains moving in directions both parallel and perpendicular to their lengths, we fit three-parameter functions to solutions from HYDRO++. We found the fits to be excellent. Combining these results with the analytic solutions, we obtained expressions for the velocity components for the bead chains that provide excellent fits to HYDRO++ solutions for arbitrary angles. Finally, we apply the methodology used for the bead chain studies to the study of an obliquely falling rod in a viscous fluid and derive analytic solutions for the velocity components of the obliquely falling rod.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3