Deep learning identifies histopathologic changes in bladder cancers associated with smoke exposure status

Author:

Eminaga OkyazORCID,Lau Hubert,Shkolyar Eugene,Wardelmann Eva,Abbas MahmoudORCID

Abstract

Smoke exposure is associated with bladder cancer (BC). However, little is known about whether the histologic changes of BC can predict the status of smoke exposure. Given this knowledge gap, the current study investigated the potential association between histology images and smoke exposure status. A total of 483 whole-slide histology images of 285 unique cases of BC were available from multiple centers for BC diagnosis. A deep learning model was developed to predict the smoke exposure status and externally validated on BC cases. The development set consisted of 66 cases from two centers. The external validation consisted of 94 cases from remaining centers for patients who either never smoked cigarettes or were active smokers at the time of diagnosis. The threshold for binary categorization was fixed to the median confidence score (65) of the development set. On external validation, AUC was used to assess the randomness of predicted smoke status; we utilized latent feature presentation to determine common histologic patterns for smoke exposure status and mixed effect logistic regression models determined the parameter independence from BC grade, gender, time to diagnosis, and age at diagnosis. We used 2,000-times bootstrap resampling to estimate the 95% Confidence Interval (CI) on the external validation set. The results showed an AUC of 0.67 (95% CI: 0.58–0.76), indicating non-randomness of model classification, with a specificity of 51.2% and sensitivity of 82.2%. Multivariate analyses revealed that our model provided an independent predictor for smoke exposure status derived from histology images, with an odds ratio of 1.710 (95% CI: 1.148–2.54). Common histologic patterns of BC were found in active or never smokers. In conclusion, deep learning reveals histopathologic features of BC that are predictive of smoke exposure and, therefore, may provide valuable information regarding smoke exposure status.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3