Accelerated construction of stress relief music datasets using CNN and the Mel-scaled spectrogram

Author:

Choi SuvinORCID,Park Jong-IkORCID,Hong Cheol-Ho,Park Sang-Gue,Park Sang-Cheol

Abstract

Listening to music is a crucial tool for relieving stress and promoting relaxation. However, the limited options available for stress-relief music do not cater to individual preferences, compromising its effectiveness. Traditional methods of curating stress-relief music rely heavily on measuring biological responses, which is time-consuming, expensive, and requires specialized measurement devices. In this paper, a deep learning approach to solve this problem is introduced that explicitly uses convolutional neural networks and provides a more efficient and economical method for generating large datasets of stress-relief music. These datasets are composed of Mel-scaled spectrograms that include essential sound elements (such as frequency, amplitude, and waveform) that can be directly extracted from the music. The trained model demonstrated a test accuracy of 98.7%, and a clinical study indicated that the model-selected music was as effective as researcher-verified music in terms of stress-relieving capacity. This paper underlines the transformative potential of deep learning in addressing the challenge of limited music options for stress relief. More importantly, the proposed method has profound implications for music therapy because it enables a more personalized approach to stress-relief music selection, offering the potential for enhanced emotional well-being.

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. Superior, Violent and Aggressive: Hegemonic Masculinity in Arabic Music Videos;S Hamdan;Arab Media and Society,2022

2. The effect of music on the human stress response;MV Thoma;PloS one,2013

3. Music listening as a means of stress reduction in daily life;A Linnemann;Psychoneuroendocrinology,2015

4. The analgesic effect of music on cold pressor pain responses: The influence of anxiety and attitude toward pain;S Choi;PloS one,2018

5. Music therapy practice status and trends worldwide: An international survey study;P Kern;The Journal of Music Therapy,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3